

TETRAHEDRON LETTERS

Tetrahedron Letters 44 (2003) 27-28

Synthesis of 6Z,8E-heneicosadien-11-one, a sex pheromone of the painted apple moth, *Teia anartoides*

Jasmine C. Jury, a,b Simon Fieldera,* and Markandu Vigneswarana

^aThe Horticulture and Food Research Institute of New Zealand Ltd., Private Bag 11030, Palmerston North, New Zealand ^bThe Research School of Chemistry, Australian National University, Canberra, ACT, Australia

Received 1 October 2002; revised 28 October 2002; accepted 8 November 2002

Abstract—6*Z*,8*E*-Heneicosadien-11-one, a sex pheromone of the painted apple moth, *Teia anartoides* has been prepared in seven steps from 1,2-epoxydodecane in an overall yield of 25%. © 2002 Elsevier Science Ltd. All rights reserved.

The painted apple moth, Teia anartoides (Lepidoptera: Lymantriidae), a native of Australia's southeastern mainland and Tasmania,1 has been identified as a recent arrival to New Zealand where it is considered a pest of significant economic importance.² As part of an ongoing eradication program, 6Z,8E-heneicosadien-11-one 1 was required for the formulation of a synthetic pheromone blend to monitor the distribution of the painted apple moth. Dienone 1 has been reported previously as a synergistic sex pheromone of the Douglas-fir tussock moth, 4 however, its synthesis, employing a Wittig strategy, vielded a mixture of isomeric polyenes requiring extensive purification by silver nitrate mediated preparative chromatography.4 To prepare sufficient quantities of isomerically pure dienone 1 for insect lures, an alternative more stereoselective synthesis was investigated (Fig. 1).

Lithium acetylide–EDA complex was reacted with 1,2-epoxydodecane **2** in DMSO at room temperature⁵ and silylation of the resulting secondary alcohol, under standard conditions,⁶ gave the TBS protected tetra-decynol **3** in 83% yield over the two steps. *E*-Vinyl iodide **4** was obtained as a single stereoisomer in good yield by the hydrozirconation–iodination⁷ of acetylene **3** with Schwartz's reagent⁸ and freshly sublimed iodine.

Sonogashira coupling⁹ of iodide **4** with 1-heptyne proceeded smoothly and enyne **5** was isolated in quantitative yield after chromatography on silica gel. Initial attempts to reduce selectively the conjugated enyne **5** to the *E*,*Z*-diene **6** under a variety of conditions, including Lindlar's catalyst¹⁰ and disiamylborane,¹¹ proved unsuccessful. Formation of the protected-*E*,*Z*-dienol **6** was however achieved in good yield by the partial

Figure 1. Synthesis of 6Z,8E-heneicosadien-11-one 1; reagents and conditions. (a) LiC≡CH:H₂NCH₂CH₂NH₂, DMSO, rt, 86%; (b) TBDMSCl, imidazole, DMF, 0°C, 97%; (c) (i) Cp₂ZrHCl, PhH, rt, dark, 48 h, (ii) I₂, 65%; (d) 1-heptyne, PdCl₂(CH₃CN)₂, CuI, piperidine, rt, quant.; (e) (i) Ni(OAc)₂:4H₂O, NaBH₄, EtOH, 0°C, (ii) H₂NCH₂CH₂NH₂, **5**, H₂, rt, 69%; (f) TBAF, CH₂Cl₂, rt, 78%; (g) PCC, K₂CO₃, rt, CH₂Cl₂, 87%.

^{*} Corresponding author. Tel.: +64-6-3568080; fax: +64-6-3546731; e-mail: sfielder@hortresearch.co.nz

reduction of **5** in the presence of catalytic P2-Ni under a hydrogen atmosphere. Deserved coupling constants of 15.0 and 11.2 Hz in the H NMR spectrum and comparison with the spectra of other dienes described the stereochemistry of the protected dienol **6** as 6Z,8E. Fluoride mediated deprotection of the silyl ether and PCC oxidation of the secondary alcohol concluded the synthesis of dienone **1**. The synthetic material was identical by GC–MS to the natural material isolated from the female painted apple moth. Secondary alcohol.

In conclusion, 6Z,8E-heneicosadien-11-one 1 has been prepared stereoselectively in seven steps from readily available starting materials in an overall yield of 25%. Dienone 1 is currently under evaluation as a synthetic sex pheromone for the painted apple moth and its use to control this pest will be reported in due course.

Acknowledgements

Financial support from New Zealand's Ministry of Agriculture and Forestry is gratefully acknowledged. We thank Dr. Gary G. Grant of the Canadian Forest Service for a generous gift of 6*Z*,8*E*-heneicosadien-11-one and Drs. Max Suckling, Jocelyn G. Millar and Keith N. Slessor for helpful discussions.

References

- Common, I. F. B. Moths of Australia; Melbourne University Press, 1990.
- 2. Hoare, R. J. B. New Zealand Entomol. 2001, 24, 23-47.
- 3. The New Zealand Ministry of Agriculture and Forestry.
- Gries, G.; Slessor, K. N.; Gries, R.; Khaskin, G.; Wimalaratne, P. D. C.; Gray, T. G.; Grant, G. G.; Tracey, A. S.; Hulme, M. J. Chem. Ecol. 1997, 23, 19–34.
- Buist, P. H.; Adeney, R. A. J. Org. Chem. 1991, 56, 3449–3452.
- Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190–6191.

- 7. Selles, P.; Lett, R. Tetrahedron Lett. 2002, 43, 4621–4625.
- 8. Hart, D. W.; Blackburn, T. F.; Schwartz, J. J. Am. Chem. Soc. 1975, 97, 679–680.
- 9. Alami, M.; Crousse, B.; Ferri, F. *J. Organomet. Chem.* **2001**, *624*, 114–123.
- Nicolaou, K. C.; Webber, S. E. J. Am. Chem. Soc. 1984, 106, 5734–5736.
- Zweifel, G.; Poiston, N. L. J. Am. Chem. Soc. 1970, 92, 4068–4071.
- 12. Suh, Y.-G.; Min, K.-H.; Lee, Y.-S.; Seo, S.-Y.; Kim, S.-H.; Park, H.-J. *Tetrahedron Lett.* **2002**, *43*, 3825–3828.
- 13. 11-tert-Butyldimethylsiloxyheneicosa-(Z)6,(E)8-diene 6 ¹H NMR (CDCl₃, 400 MHz) δ 6.32 (1H, dd, J=15.0, 11.2 Hz, H8), 5.96 (1H, dd, J=11.2, 11.2 Hz, H7), 5.65 (1H, dt, J=15.0, 7.5 Hz, H9), 5.33 (1H, dt, J=11.2, 7.6 Hz, H6), 3.69 (1H, quint., J=5.7 Hz, H11), 2.29–2.23 (2H, m, H10), 2.21–2.14 (2H, m, H5), 1.45–1.28 (24H, m, H2-H4 and H12-H20), 0.93–0.88 (15H, m, H1, H21, and -siC(CH₃)₃), 0.06 (3H, s, -siCH₃), 0.05 (3H, s, -siCH₃) ppm; ¹³C NMR (CDCl₃, 400 MHz) δ 130.7 (C9), 130.4 (C6), 128.6 (C7), 127.8 (C8), 72.3 (C11), 41.0 (C10), 37.1, 32.0, 31.5, 29.8, 29.7, 29.7, 29.5, 29.4, 27.7, 25.9, 25.4, 22.7, 22.6, 18.1, 14.1, 14.1, -4.4, -4.5 ppm.
- Miyaura, N.; Suginome, H.; Suzuki, A. Tetrahedron 1983, 39, 3271–3277.
- 15. Found M^+ 306.2929; $C_{21}H_{38}O$ requires 306.2923; ν_{max} (thin film) 2956, 2926, 2855, 1717, 1466, 1377, 1365, 984 cm⁻¹; 1H NMR (CDCl₃, 400 MHz) δ 6.38 (1H, ddq, J=15.2, 11.2, 1.2 Hz, H8), 5.98 (1H, dd, J=11.2, 11.2 Hz, H7), 5.73 (1H, dt, J=15.2, 7.4 Hz, H9), 5.40 (1H, dt, J=11.2, 7.7 Hz, H6), 3.20 (2H, d, J=7.4 Hz, H10), 2.43 (2H, t, J=7.5 Hz, H12), 2.18–2.12 (2H, m, H5), 1.64–1.10 (22H, m, H2-H4, H13-H20), 0.90–0.86 (6H, m, H1 and H21) ppm; 13 C NMR (CDCl₃) δ 209.2 (C11), 132.2 (C6), 129.4 (C8), 127.8 (C7), 125.0 (C9), 46.9 (C10), 42.4 (C12), 31.8, 31.4, 29.7, 29.5, 29.5, 29.4, 29.3, 29.3, 29.2, 23.7, 22.7, 22.5 (C2-C5, C13-C20), 14.1, 14.0 (C21 and C1) ppm; MS m/z (rel. int.%) 306 (M⁺ 6), 221(4), 170(9), 169(100), 109(10), 95(32), 85(46), 81(20), 71(44), 67(30), 57(69), 43(65).
- 16. Gibb, A.; Suckling, M.; Fielder, S. Unpublished results.